Volume 16, Issue 2 (February 2018)                   IJRM 2018, 16(2): 83-92 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghobadi F, Rahmanifar F, Mehrabani D, Tamadon A, Dianatpour M, Zare S et al . Endometrial mesenchymal stem stromal cells in mature and immature sheep: An in vitro study. IJRM 2018; 16 (2) :83-92
URL: http://ijrm.ir/article-1-968-en.html
1- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
2- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
3- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran , mehrabad@sums.ac.ir
4- Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
Abstract:   (3434 Views)
Background: Endometrial mesenchymal stem stromal cells (EnMSCs) are critical for uterine function, repair, and regeneration.
Objective: This study introduced isolation technique of EnMSCs and compared the characteristics of EnMSCs in mature and immature ewes.
Materials and Methods: Endometrial tissue samples from the uterus of 10 ewes were collected from the slaughterhouse. Endometrial cells were isolated from tissue using cold incubation and then chopping and treating was performed with collagenase type I. Isolated cells were cultured in cell culture medium and then attached cells to flasks were harvested as EnMSCs and subcultured. To enumerate the cells, the population doubling time (PDT) was determined and 2.2×104 cells in passage 4 were seeded into 24-well culture plates to compare the growth curves of isolated cells. Reverse transcription polymerase chain reaction (RT-PCR) was performed for detection of CD34 and CD73 markers. The osteogenic and adipogenic potential of isolated cells were determined using differentiation tests.
Results: EnMSCs adhered to the flasks and displayed spindle-shape. Based on findings of the cell count and the growth curves, the EnMSCs growth was significantly more prominent in immature ewes in comparison to mature sheep. The PDT of EnMSCs in immature ewes was about 21 hr whereas this time period was two times higher (45 hr) in mature sheep. RT-PCR analyses of EnMSCs were positive for CD73 and negative for CD34. EnMSCs were differentiated into osteoblasts and adipocytes.
Conclusion: Based on mesenchymal stem cells characters confirmed in EnMSCs, they can be a candidate for cell therapy and regenerative medicine.
Full-Text [PDF 627 kb]   (841 Downloads) |   |   Full-Text (HTML)  (450 Views)  
Type of Study: Original Article |

References
1. Zhao J, Zhang Q, Wang Y, Li Y. Endometrial pattern, thickness and growth in predicting pregnancy outcome following 3319 IVF cycle. Reprod Biomed Online 2014; 29: 291-298. [DOI:10.1016/j.rbmo.2014.05.011]
2. Cabezas J, Lara E, Pacha P, Rojas D, Veraguas D, Saravia F, et al. The endometrium of cycling cows contains populations of putative mesenchymal progenitor cells. Reprod Domest Anim 2014; 49: 550-559. [DOI:10.1111/rda.12309]
3. Cervello I, Martinez-Conejero JA, Horcajadas JA, Pellicer A, Simon C. Identification, characterization and co-localization of label-retaining cell population in mouse endometrium with typical undifferentiated markers. Hum Reprod 2007; 22: 45-51. [DOI:10.1093/humrep/del332]
4. Chan RW, Gargett CE. Identification of label-retaining cells in mouse endometrium. Stem Cells 2006; 24: 1529-1538. [DOI:10.1634/stemcells.2005-0411]
5. Letouzey V, Tan KS, Deane JA, Ulrich D, Gurung S, Ong YR, et al. Isolation and characterisation of mesenchymal stem/stromal cells in the ovine endometrium. PLoS One 2015; 10: e0127531. [DOI:10.1371/journal.pone.0127531]
6. Mehrabani D, Hassanshahi MA, Tamadon A, Zare S, Keshavarz S, Rahmanifar F, et al. Adipose tissue-derived mesenchymal stem cells repair germinal cells of seminiferous tubules of busulfan-induced azoospermic rats. J Hum Reprod Sci 2015; 8: 103-110. [DOI:10.4103/0974-1208.158618]
7. Mehrabani D, Rahmanifar F, Mellinejad M, Tamadon A, Dianatpour M, Zare S, et al. Isolation, culture, characterization, and adipogenic differentiation of heifer endometrial mesenchymal stem cells. Comp Clin Pathol 2015; 24: 1159-1164. [DOI:10.1007/s00580-014-2053-0]
8. Murakami K, Bhandari H, Lucas ES, Takeda S, Gargett CE, Quenby S, et al. Deficiency in clonogenic endometrial mesenchymal stem cells in obese women with reproductive failure-a pilot study. PLoS One 2013; 8: e82582. [DOI:10.1371/journal.pone.0082582]
9. Sakr S, Naqvi H, Komm B, Taylor HS. Endometriosis impairs bone marrow-derived stem cell recruitment to the uterus whereas bazedoxifene treatment leads to endometriosis regression and improved uterine stem cell engraftment. Endocrinology 2014; 155: 1489-1497. [DOI:10.1210/en.2013-1977]
10. Gargett CE, Nguyen HPT, Ye L. Endometrial regeneration and endometrial stem/progenitor cells. Rev Endocr Metab Disord 2012; 13: 235-251. [DOI:10.1007/s11154-012-9221-9]
11. Li T, He H, Liu R, Wang SX, Pu DM. Isolation and identification of epithelial and stromal stem cells from eutopic endometrium of women with endometriosis. Eur J Obstet Gynecol Reprod Biol 2014; 178: 89-94. [DOI:10.1016/j.ejogrb.2014.04.001]
12. Santamaria X, Massasa EE, Feng Y, Wolff E, Taylor HS. Derivation of insulin producing cells from human endometrial stromal stem cells and use in the treatment of murine diabetes. Mol Ther 2011; 19: 2065-2071. [DOI:10.1038/mt.2011.173]
13. Ulrich D, Tan KS, Deane J, Schwab K, Cheong A, Rosamilia A, et al. Mesenchymal stem/stromal cells in post-menopausal endometrium. Hum Reprod 2014; 29: 1895-1905. [DOI:10.1093/humrep/deu159]
14. Wolff EF, Gao XB, Yao KV, Andrews ZB, Du H, Elsworth JD, et al. Endometrial stem cell transplantation restores dopamine production in a Parkinson's disease model. J Cell Mol Med 2011; 15: 747-755. [DOI:10.1111/j.1582-4934.2010.01068.x]
15. Liu T, Huang Y, Zhang J, Qin W, Chi H, Chen J, et al. Transplantation of human menstrual blood stem cells to treat premature ovarian failure in mouse model. Stem Cells Dev 2014; 23: 1548-1557. [DOI:10.1089/scd.2013.0371]
16. Duke CM, Taylor HS. Stem cells and the reproductive system: Historical perspective and future directions. Maturitas 2013; 76: 284-289. [DOI:10.1016/j.maturitas.2013.08.012]
17. Yang XY, Wang W, Li X. In vitro hepatic differentiation of human endometrial stromal stem cells. In Vitro Cell Dev Biol Anim 2014; 50: 162-170. [DOI:10.1007/s11626-013-9688-z]
18. Khademi F, Soleimani M, Verdi J, Tavangar SM, Sadroddiny E, Masumi M, et al. Human endometrial stem cells differentiation into functional hepatocyte-like cells. Cell Biol Int 2014; 38: 825-834. [DOI:10.1002/cbin.10278]
19. Ai J, Javidan AN, Mehrabani D. The possibility of differentiation of human endometrial stem cells into neural cells. Iran Red Crescent Med J 2010; 3: 328-331.
20. Asmani MN, Ai J, Amoabediny G, Noroozi A, Azami M, Ebrahimi-Barough S, et al. Three-dimensional culture of differentiated endometrial stromal cells to oligodendrocyte progenitor cells (OPCs) in fibrin hydrogel. Cell Biol Int 2013; 37: 1340-1349. [DOI:10.1002/cbin.10171]
21. Ai J, Mehrabani D. The potential of human endometrial stem cells for osteoblast differentiation. Iran Red Crescent Med J 2010; 12: 585-587.
22. Shoae-Hassani A, Sharif S, Seifalian AM, Mortazavi-Tabatabaei SA, Rezaie S, Verdi J. Endometrial stem cell differentiation into smooth muscle cell: a novel approach for bladder tissue engineering in women. BJU Int 2013; 112: 854-863. [DOI:10.1111/bju.12195]
23. Tabatabaei FS, Dastjerdi MV, Jazayeri M, Haghighipour N, Dastjerdie EV, Bordbar M. Comparison of osteogenic medium and uniaxial strain on differentiation of endometrial stem cells. Dent Res J 2013; 10: 190-196. [DOI:10.4103/1735-3327.113341]
24. Ai J, Mehrabani D. Are Endometrial stem cells novel tools against ischemic heart failure in women? a hypothesis. Iran Red Crescent Med J 2010; 12: 73-75.
25. Hosseinkhani M, Mehrabani D, Karimfar MH, Bakhtiyari S, Manafi A, Shirazi R. Tissue engineered scaffolds in regenerative medicine. World J Plast Surg 2014; 3: 3-7.
26. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008; 3: 301-313. [DOI:10.1016/j.stem.2008.07.003]
27. Dimitrov R, Timeva T, Kyurkchiev D, Stamenova M, Shterev A, Kostova P, et al. Characterization of clonogenic stromal cells isolated from human endometrium. Reproduction 2008; 135: 551-558. [DOI:10.1530/REP-07-0428]
28. Li L, Xie T. Stem cell niche: structure and function. Annu Rev Cell Dev Biol 2005; 21: 605-631. [DOI:10.1146/annurev.cellbio.21.012704.131525]
29. Chan RW, Schwab KE, Gargett CE. Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod 2004; 70: 1738-1750. [DOI:10.1095/biolreprod.103.024109]
30. Meng X, Ichim TE, Zhong J, Rogers A, Yin Z, Jackson J, et al. Endometrial regenerative cells: a novel stem cell population. J Transl Med 2007; 5: 57. [DOI:10.1186/1479-5876-5-57]
31. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-147. [DOI:10.1126/science.284.5411.143]
32. Schwab KE, Chan RW, Gargett CE. Putative stem cell activity of human endometrial epithelial and stromal cells during the menstrual cycle. Fertil Steril 2005; 84: 1124-1130. [DOI:10.1016/j.fertnstert.2005.02.056]
33. Tawonsawatruk T, Spadaccino A, Murray IR, Peault B, Simpson HA. Growth kinetics of rat mesenchymal stem cells from 3 potential sources: bone marrow, periosteum and adipose tissue. J Med Assoc Thai 2012; 95 (Suppl): S189-197.
34. Eslaminejad MB, Vahabi S, Shariati M, Nazarian H. In vitro growth and characterization of stem cells from human dental pulp of deciduous versus permanent teeth. J Dent 2010; 7: 185-195.
35. Pauciullo A, Perucatti A, Cosenza G, Iannuzzi A, Incarnato D, Genualdo V, et al. Sequential cross-species chromosome painting among river buffalo, cattle, sheep and goat: a useful tool for chromosome abnormalities diagnosis within the family Bovidae. PLoS One 2014; 9: e110297. [DOI:10.1371/journal.pone.0110297]
36. Gargett CE, Schwab KE, Zillwood RM, Nguyen HP, Wu D. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod 2009; 80: 1136-1145. [DOI:10.1095/biolreprod.108.075226]
37. Ghobadi F, Mehrabani D, Mehrabani G. Regenerative potential of endometrial stem cells: a mini review. World J Plast Surg 2015; 4: 3-8.
38. Mehrabani D, Mehrabani G, Zare S, Manafi A. Adipose-derived stem cells (ADSC) and aesthetic surgery: a mini review. World J Plast Surg 2013; 2: 65-70.
39. Niknamasl A, Ostad SN, Soleimani M, Azami M, Salmani MK, Lotfibakhshaiesh N, et al. A new approach for pancreatic tissue engineering: human endometrial stem cells encapsulated in fibrin gel can differentiate to pancreatic islet beta-cell. Cell Biol Int 2014; 38: 1174-1182. [DOI:10.1002/cbin.10314]
40. Maruyama T. Endometrial stem/progenitor cells. J Obstet Gynaecol Res 2014; 40: 2015-2022. [DOI:10.1111/jog.12501]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb